options
search icon
email icon
ES
rrss gif icons
twitter icon
linkedin icon youtube icon
shape

Explainable Artificial Intelligence for Industrial Anomaly Diagnosis in Multi-sensor Data

Jokin Labaien Soto


09/11/2023

  • DIRECTORES: Xabier De Carlos y Ehki Zugasti
  • UNIVERSIDAD: Mondragon Unibertsitatea

RESUMEN

Esta tesis explora el potencial de la Inteligencia Artificial Explicable (XAI) en el contexto de la detección y diagnóstico de anomalías en series temporales. Al aumentar la transparencia de modelos tradicionalmente opacos y ofrecer explicaciones inmediatas e inteligibles, hemos sentado las bases para procesos de toma de decisiones más informados en diversos sectores.

Antes de empezar con la fase experimental, revisamos la literatura existente sobre XAI, detección de anomalías y diagnóstico de anomalías. La exploración practica comienza con un estudio del algoritmo Contrastive Explanation Method (CEM) en tareas de series temporales. Esta investigación revela tanto las ventajas como las limitaciones del CEM. Tras reconocer sus deficiencias, en particular su lentitud, presentamos el método llamado Real-time Guided Counterfactual Explanations (RTGCEx). Este innovador método es un enfoque agnóstico del modelo que proporciona explicaciones contrafácticas guiadas por el usuario en tiempo real para diferentes dominios y tipos de datos.

Posteriormente, para evitar la pérdida de información esencial que podrían contener los detectores de anomalías y que los métodos agnósticos podrían pasar, abordamos el reto de crear modelos intrínsecamente interpretables. Para ello, presentamos en primer lugar el algoritmo Diagnostic Fourier-based Spatio-temporal Transformer (DFSTrans). Esta herramienta combina las capacidades de las redes neuronales convolucionales 1D con una estructura inspirada en los Transformers. Este modelo aprende eficazmente las dependencias espaciales y temporales de los datos temporales multivariantes, demostrando ser una potente herramienta para diagnosticar anomalías. Reconociendo las dificultades asociadas a la obtención de datos etiquetados, desarrollamos una variante no supervisada, denominada uDFSTrans. Este modelo incorpora una doble estrategia: una técnica de multienmascaramiento y un mecanismo de atención orientado al contexto, que facilita la detección y elucidación de anomalías sin necesidad de datos etiquetados.

close overlay