options
search icon
email icon
ES
rrss gif icons
twitter icon
linkedin icon youtube icon
shape

PCTBagging: From inner ensembles to ensembles. A trade-off between discriminating capacity and interpretability

Ibarguren I., Pérez J.M., Muguerza J., Arbelaitz O., Yera A.

Information Sciences


01/01/2022

The use of decision trees considerably improves the discriminating capacity of ensemble classifiers. However, this process results in the classifiers no longer being interpretable, although comprehensibility is a desired trait of decision trees. Consolidation (consolidated tree construction algorithm, CTC) was introduced to improve the discriminating capacity of decision trees, whereby a set of samples is used to build the consolidated tree without sacrificing transparency. In this work, PCTBagging is presented as a hybrid approach between bagging and a consolidated tree such that part of the comprehensibility of the consolidated tree is maintained while also improving the discriminating capacity. The consolidated tree is first developed up to a certain point and then typical bagging is performed for each sample. The part of the consolidated tree to be initially developed is configured by setting a consolidation percentage. In this work, 11 different consolidation percentages are considered for PCTBagging to effectively analyse the trade-off between comprehensibility and discriminating capacity. The results of PCTBagging are compared to those of bagging, CTC and C4.5, which serves as the base for all other algorithms. PCTBagging, with a low consolidation percentage, achieves a discriminating capacity similar to that of bagging while maintaining part of the interpretable structure of the consolidated tree. PCTBagging with a consolidation percentage of 100% offers the same comprehensibility as CTC, but achieves a significantly greater discriminating capacity.

DOI / link

close overlay