options
search icon
email icon
ES
rrss gif icons
twitter icon
linkedin icon youtube icon
shape

On Fault-Tolerant Control Systems: A Novel Reconfigurable and Adaptive Solution for Industrial Machines

Jorge Rodriguez Guerra, Carlos Calleja, Ana Maria Macarulla, Aron Pujana, Iker Elorza, Mikel Ramos

IEEE Access


21/02/2020

Fault-Tolerant Controllers (FTCs) modify system behaviour to overcome faults without human interaction. These control algorithms, when based on active approach, detect, quantify and isolate the faults during Fault Detection and Isolation (FDI) phase. Afterwards, during Control Re-design (CR) phase, the controller is reconfigured and adapted to the faulty situation. This last phase has been approached by a wide variety of algorithms, being Adaptive Controllers (ACs) the ones studied in this paper. Despite their potentiality to overcome faults, industrial manufacturing systems demand robustness and flexibility levels hardly achievable by these algorithms. On this context, the paper proposes to upgrade them introducing novel Digital-Twin (DT) models to increase its flexibility and Anti-Windup (AW) techniques to improve their robustness. These novelties reach their maximum potential when FDI and CR phases merge to generate a novel FTC platform based on a Bank of Controllers (BC), improving the fault avoidance process as controller gains are switched to the ones that recover the machine more efficiently.

DOI / link

close overlay