search icon
email icon
rrss gif icons
twitter icon
linkedin icon youtube icon

Comprehensive Evaluation of Rectangular and Double-D Coil Geometry for 50 kW/85 kHz IPT System

R. Bosshard, U. Iruretagoyena, J. W. Kolar

IEEE Journal of Emerging and Selected Topics in Power Electronics


In this paper, the influence of the inductive power transfer (IPT) coil geometry on the performance factors efficiency, power density, and stray field is studied for a public transport electric vehicle battery charging system. IPT coil geometries with rectangular winding and with double-D winding are compared based on the Pareto fronts obtained from a multi-objective optimization. In order to study the effect of the winding layout experimentally, two full-scale 50 kW/85 kHz hardware prototypes with the same outer coil dimensions (410 × 760 × 60mm3) and ferrite core structure are constructed. For both the prototypes, the measured dc-dc efficiency is approximately 95.5% at 50 kW with a 160 mm air gap and ideally positioned coils, which confirms the calculations. The positioning tolerance of the double-D prototype is inferior, because with coil misalignment the efficiency decays faster than for the rectangular winding prototype. Flux density measurements show that both the prototypes fulfill the ICNIRP 2010 standard at 800 mm lateral distance from the coil center. However, the measured magnetic stray field is a factor of two lower for the double-D prototype, which is a key advantage in high-power applications.

DOI / link: dx.doi.org/10.1109/JESTPE.2016.2600162

close overlay